Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis.

نویسندگان

  • Jianfeng Wang
  • Zi-Hua Lu
  • Hans-Joachim Gabius
  • Christine Rohowsky-Kochan
  • Robert W Ledeen
  • Gusheng Wu
چکیده

Several animal autoimmune disorders are suppressed by treatment with the GM1 cross-linking units of certain toxins such as B subunit of cholera toxin (CtxB). Due to the recent observation of GM1 being a binding partner for the endogenous lectin galectin-1 (Gal-1), which is known to ameliorate symptoms in certain animal models of autoimmune disorders, we tested the hypothesis that an operative Gal-1/GM1 interplay induces immunosuppression in a manner evidenced by both in vivo and in vitro systems. Our study of murine experimental autoimmune encephalomyelitis (EAE) indicated suppressive effects by both CtxB and Gal-1 and further highlighted the role of GM1 in demonstrating enhanced susceptibility to EAE in mice lacking this ganglioside. At the in vitro level, polyclonal activation of murine regulatory T (Treg) cells caused up-regulation of Gal-1 that was both cell bound and released to the medium. Similar activation of murine CD4(+) and CD8(+) effector T (Teff) cells resulted in significant elevation of GM1 and GD1a, the neuraminidase-reactive precursor to GM1. Activation of Teff cells also up-regulated TRPC5 channels which mediated Ca(2+) influx upon GM1 cross-linking by Gal-1 or CtxB. This involved co-cross-linking of heterodimeric integrin due to close association of these alpha(4)beta(1) and alpha(5)beta(1) glycoproteins with GM1. Short hairpin RNA (shRNA) knockdown of TRPC5 in Teff cells blocked contact-dependent proliferation inhibition by Treg cells as well as Gal-1/CtxB-triggered Ca(2+) influx. Our results thus indicate GM1 in Teff cells to be the primary target of Gal-1 expressed by Treg cells, the resulting co-cross-linking and TRPC5 channel activation contributing importantly to the mechanism of autoimmune suppression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ganglioside GM1 Deficiency in Effector T Cells From NOD Mice Induces Resistance to Regulatory T-Cell Suppression

OBJECTIVE To detect GM1 deficiency and determine its role in effector T cells (Teffs) from NOD mice in establishing resistance to regulatory T-cell (Treg) suppression. RESEARCH DESIGN AND METHODS CD4(+) and CD8(+) Teffs were isolated from spleens of prediabetic NOD mice for comparison with similar cells from Balb/c, C57BL/6, and NOR mice. GM1 was quantified with thin-layer chromatography for ...

متن کامل

Functional interplay between ganglioside GM1 and cross‐linking galectin‐1 induces axon‐like neuritogenesis via integrin‐based signaling and TRPC5‐dependent Ca2+ influx

Axon-like neuritogenesis in neuroblastoma (NG108-15) cells and primary cerebellar granular neurons is furthered by the presence of ganglioside GM1. We describe here that galectin-1 (Gal-1), a homobivalent endogenous lectin, is an effector by cross-linking the ganglioside and its associated glycoprotein α5 β1 -integrin. The thereby triggered signaling cascade involves autophosphorylation of foca...

متن کامل

Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture.

Cell density-dependent inhibition of growth and neural differentiation in the human neuroblastoma cell line SK-N-MC are associated with a ganglioside sialidase-mediated increase of GM1 and lactosylceramide at the cell surface. Because these glycolipids expose galactose residues, we have initiated the study of the potential role of galectins in such cellular events. Using specific antibodies, ga...

متن کامل

O 13: Ion Channels in Autoimmune Neurodegeneration

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by widespread inflammation, focal demyelination and a variable degree of axonal and neuronal loss. Ionic conductances regulate T cell activation as well as neuronal function and thus have been found to play a crucial role in MS pathogenesis. Since present therapeutical approaches are only parti...

متن کامل

Cutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis.

The glucocorticoid-induced TNFR (GITR) is expressed at high levels on resting CD4(+)CD25(+) T regulatory (T(R)) cells and regulates their suppressive phenotype. Accordingly, we show that anti-GITR mAb treatment of SJL mice with proteolipid protein 139-151-induced experimental autoimmune encephalomyelitis significantly exacerbated clinical disease severity and CNS inflammation, and induced eleva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 182 7  شماره 

صفحات  -

تاریخ انتشار 2009